初三数学知识点总结 第1篇
1、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=—a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。即:﹝另有两种写法﹞
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离。
(3)几个非负数的和等于零则每个非负数都等于零。
注意:│a│≥0,符号_││_是_非负数_的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有_││_出现,其关键一步是去掉_││_符号。
2、解一元二次方程
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
(1)直接开平方法:
用直接开平方法解形如(x—m)2=n(n≥0)的方程,其解为x=±m。
直接开平方法就是平方的逆运算。通常用根号表示其运算结果。
(2)配方法
通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2)系数化1:将二次项系数化为1
3)移项:将常数项移到等号右侧
4)配方:等号左右两边同时加上一次项系数一半的平方
5)变形:将等号左边的代数式写成完全平方形式
6)开方:左右同时开平方
7)求解:整理即可得到原方程的根
(3)公式法
公式法:把一元二次方程化成一般形式,然后计算判别式△=b2—4ac的值,当b2—4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2—4ac≥0)就可得到方程的根。
3、圆的必考知识点
(1)圆
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。
(2)圆的相关特点
1)径
连接圆心和圆上的任意一点的线段叫做半径,字母表示为r
通过圆心并且两端都在圆上的线段叫做直径,字母表示为d
直径所在的直线是圆的对称轴。在同一个圆中,圆的直径d=2r
2)弦
连接圆上任意两点的线段叫做弦。在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
3)弧
圆上任意两点间的部分叫做圆弧,简称弧,以“⌒”表示。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。
在同圆或等圆中,能够互相重合的两条弧叫做等弧。
4)角
顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。
初三数学知识点总结 第2篇
单项式与多项式
仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等
对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。
4、一元多项式的根
一般地,能够使多项式fx的'值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
两个数的和与这两个数的差的积等于这两个数的平方差。
初三数学知识点总结 第3篇
一、圆的定义
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质
1、圆的对称性
(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。)
8、直线与圆的位置关系。d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;
直线与圆没有交点,直线与圆相离。
9、中,A(x1,y1)、B(x2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。
初三数学知识点总结 第4篇
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
(1)若这个条件不成立,则不是二次根式;
(2)是一个重要的非负数,即; ≥0。
2、重要公式:
3、积的算术平方根:
积的算术平方根等于积中各因式的算术平方根的积;
4、二次根式的乘法法则:。
5、二次根式比较大小的方法:
(1)利用近似值比大小;
(2)把二次根式的系数移入二次根号内,然后比大小;
(3)分别平方,然后比大小。
6、商的算术平方根:,
商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
7、二次根式的除法法则:
分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
8、最简二次根式:
(1)满足下列两个条件的二次根式,叫做最简二次根式,
①被开方数的.因数是整数,因式是整式,
②被开方数中不含能开的尽的因数或因式;
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;
(4)二次根式计算的最后结果必须化为最简二次根式。
9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
10、二次根式的混合运算:
(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。
2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。
3。一元二次方程根的判别式:当ax2+bx+c=0
(a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:
Δ>0 <=>有两个不等的实根;
Δ=0 <=>有两个相等的实根;Δ<0 <=>无实根;
4。平均增长率问题————————应用题的类型题之一(设增长率为x):
(1)第一年为a ,第二年为a(1+x) ,第三年为a(1+x)2。
(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。
第23章旋转
1、概念:
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。
旋转三要素:旋转中心、旋转方面、旋转角
2、旋转的性质:
(1)旋转前后的两个图形是全等形;
(2)两个对应点到旋转中心的距离相等
(3)两个对应点与旋转中心的连线段的夹角等于旋转角
3、中心对称:
把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
这两个图形中的对应点叫做关于中心的对称点。
4、中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
5、中心对称图形:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
初三数学知识点总结 第5篇
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
初三数学知识点总结 第6篇
直角三角形的判定方法:
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
初三数学知识点总结 第7篇
1、图形的相似
相似多边形的对应边的比值相等,对应角相等;
两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;
相似比:相似多边形对应边的比值。
2、相似三角形
判定:
平行于三角形一边的直线和其它两边相交,所构成的'三角形和原三角形相似;
如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3、相似三角形的周长和面积
相似三角形(多边形)的周长的比等于相似比;
相似三角形(多边形)的面积的比等于相似比的平方。
4、位似
位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。
初三数学知识点总结 第8篇
1二次根式:形如a(a0)的式子为二次根式;性质:a(a0)是一个非负数;
a2aa0。
2二次根式的乘除:ababa0,b0;
aaa0,b0。bb3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。
4海伦-秦九韶公式:S是三角形的面积,Sp(p)(pb)(pc),p为pabc。2第二章一元二次方程
1一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。
2一元二次方程的解法
配方法:将方程的一边配成完全平方式,然后两边开方;
bb24ac公式法:x2a因式分解法:左边是两个因式的乘积,右边为零。
3一元二次方程在实际问题中的应用
4韦达定理:设x1,x2是方程ax2bxc0的两个根,那么有x1x2,x1x2第三章旋转
1图形的'旋转旋转:一个图形绕某一点转动一个角度的图形变换性质:对应点到旋转中心的距离相等;
对应点与旋转中心所连的线段的夹角等于旋转角旋转前后的图形全等。
2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;
中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;
3关于原点对称的点的坐标第四章圆
1圆、圆心、半径、直径、圆弧、弦、半圆的定义
2垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧。
3弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所baca对的弦也相等。
4圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
5点和圆的位置关系点在dr点在圆上d=r点在圆内d相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
6圆和圆的位置关系
外离d>R+r外切d=R+r相交R-r第五章概率初步
1概率意义:在大量重复试验中,事件A发生的频率某个常数p附近,则常数p叫做事件A的概率。
2用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=mnm稳定在n3用频率去估计概率
初三数学知识点总结 第9篇
1、圆、圆心、半径、直径、圆弧、弦、半圆的定义
2、垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧。
3、弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4、圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的'弦是直径。
5、点和圆的位置关系
点在圆外
点在圆上 d=r
点在圆内 d
定理:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。
6、直线和圆的位置关系
相交 d
相切 d=r
相离 d>r
切线的性质定理:圆的切线垂直于过切点的半径;
切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。
7、圆和圆的位置关系
外离 d>R+r
外切 d=R+r
相交 R-r
内切 d=R-r
内含 d
8、正多边形和圆
正多边形的中心:外接圆的圆心
正多边形的半径:外接圆的半径
正多边形的中心角:没边所对的圆心角
正多边形的边心距:中心到一边的距离
9、弧长和扇形面积
扇形面积:
10、圆锥的侧面积和全面积
侧面积:
全面积
11、(附加)相交弦定理、切割线定理
第五章 概率初步
1 概率意义:在大量重复试验中,事件A发生的频率 稳定在某个常数p附近,则常数p叫做事件A的概率。
2 用列举法求概率
一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)=
3 用频率去估计概率
初三数学知识点总结 第10篇
1、弧长公式
n°的圆心角所对的弧长l的计算公式为L=nπr/180
2、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.
S=﹙n/360﹚πR2=1/2×lR
3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.
弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.
一、选择题
1.(20xxo珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()
考点:圆柱的计算.
分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.
解答:解:圆柱的侧面积=2π×3×4=24π.
故选A.
点评:本题考查了圆柱的.计算,解题的关键是弄清圆柱的侧面积的计算方法.
2.(20xxo广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()
考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.
分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.
解答:解:连接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故选B.
初三数学知识点总结 第11篇
第21章二次根式知识框图
理解并掌握下列结论:
(1)是非负数;(2);(3);
I.二次根式的定义和概念:
1、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一个非负数。
II.二次根式√ā的简单性质和几何意义
1)a≥0;√ā≥0[双重非负性]
2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式]3)√(a^2+b^2)表示平面间两点之间的距离,即勾股定理推论。
IV.二次根式的乘法和除法
1运算法则
√a√b=√ab(a≥0,b≥0)
√a/b=√a/√b(a≥0,b>0)
二数二次根之积,等于二数之积的二次根。2共轭因式
如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式。
V.二次根式的加法和减法
1同类二次根式
一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。2合并同类二次根式
把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并
Ⅵ.二次根式的混合运算
1确定运算顺序2灵活运用运算定律3正确使用乘法公式4大多数分母有理化要及时
5在有些简便运算中也许可以约分,不要盲目有理化
VII.分母有理化
分母有理化有两种方法I.分母是单项式
如:√a/√b=√a×√b/√b×√b=√ab/b
II.分母是多项式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多项式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知识框图
旋转的定义
旋转对称中心
大于360°)。
把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种
图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,
也就是说:
①中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
②中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
中心对称图形
正(2N)边形(N为大于1的正整数),线段,矩形,菱形,圆
只是中心对称图形
平行四边形等.第24章圆知识框图
圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。
两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。
圆的平面几何性质和定理
一有关圆的基本性质与定理
⑴圆的确定:不在同一直线上的三个点确定一个圆。
圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。一条弧所对的圆周角等于它所对的圆心角的一半。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。③S三角=1/2*△三角形周长*内切圆半径
④两相切圆的连心线过切点(连心线:两个圆心相连的线段)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
〖有关切线的性质和定理〗
圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。〖有关圆的计算公式〗
1.圆的周长C=2πr=πd2.圆的面积S=πr^2;3.扇形弧长l=nπr/1804.扇形面积S=π(R^2-r^2)5.圆锥侧面积S=πrl
第25章概率初步知识框图
第26章二次函数
知识框图
定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
一般式:y=ax^2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。顶点式:y=a(x-h)^2+k
交点式(与x轴):y=a(x-x1)(x-x2)
重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b)/4a)当-b/2a=0时,P在y轴上;当Δ=b-4ac=0时,P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要异号
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数
Δ=b-4ac>0时,抛物线与x轴有2个交点。Δ=b-4ac=0时,抛物线与x轴有1个交点。_______
Δ=b-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b-4ac的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax+c(a≠0)解析式:
第27章相似知识框图
相似三角形的认识
对应角相等,对应边成比例的两个三角形叫做相似三角形。(similartriangles)。互为相似形的三角形叫做相似三角形
相似三角形的判定方法
根据相似图形的特征来判断。(对应边成比例,对应角相等)
1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;
(这是相似三角形判定的引理,是以下判定方法证明的.基础。这个引理的证明方法需要平行线分线段成比例的证明)
2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;
直角三角形相似判定定理
1.斜边与一条直角边对应成比例的两直角三角形相似。
2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。射影定理
三角形相似的判定定理推论
推论一:顶角或底角相等的那个的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
相似三角形的性质
1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。3.相似三角形面积的比等于相似比的平方。
相似三角形的特例
能够完全重合的两个三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形状完全相同,相似比是k=1。
全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。
因此,相似三角形包括全等三角形。全等三角形的定义
能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;三角形全等的判定公理及推论
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。由3可推到
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。A是英文角的缩写(angle),S是英文边的缩写(side)。全等三角形的性质
1、全等三角形的对应角相等、对应边相等。2、全等三角形的对应边上的高对应相等。3、全等三角形的对应角平分线相等。4、全等三角形的对应中线相等。5、全等三角形面积相等。6、全等三角形周长相等。
7、三边对应相等的两个三角形全等。(SSS)
8、两边和它们的夹角对应相等的两个三角形全等。(SAS)9、两角和它们的夹边对应相等的两个三角形全等。(ASA)
10、两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。(HL)全等三角形的运用
1、性质中三角形全等是条件,结论是对应角、对应边相等。而全等的判定却刚好相反。2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
第28章锐角三角函数
知识框图
第29章投影与视图知识框图
代数重点难点总结
方程(组)
一、基本概念
1.方程、方程的解(根)、方程组的解、解方程(组)二、一元二次方程1.定义及一般形式:
2.解法:⑴直接开平方法(注意特征)⑵配方法(注意步骤推倒求根公式)⑶公式法:⑷因式分解法(特征:左边=0)3.根的判别式:b24ac
bc4.根与系数的关系(韦达定理):x1+x2=,x1x2=
aa逆定理:若,则以x1,x2为根的一元二次方程是:a(x-x1)(x-x2)=0。5.常用等式:
三、可化为一元二次方程的方程1.分式方程⑴定义
⑵基本思想:去分母
⑶基本解法:①去分母法②换元法(如,)⑷验根及方法2.无理方程⑴定义
⑵基本思想:分母有理化
⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法
3.简单的二元二次方程组
由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。四、列方程解应用题一概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。⑸解方程及检验。⑹答案。
综上所述,列方程解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
函数及其图象
★重难点★二次函数的图象和性质。一、平面直角坐标系
1.各象限内点的坐标的特点2.坐标轴上点的坐标的特点
3.关于坐标轴、原点对称的点的坐标的特点4.坐标平面内点与有序实数对的对应关系二、函数
1.表示方法:⑴解析法;⑵列表法;⑶图象法。
2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有意义。
3.画函数图象:⑴列表;⑵描点;⑶连线。三、二次函数(定义→图象→性质)⑴定义:
⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。用配方法变为,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a0时,在对称轴左侧,右侧;a
四边形
★重难点★相交线与平行线、三角形、四边形的有关概念、判定、性质。分类表:
1.一般性质(角)⑴内角和:360°
⑵顺次连结各边中点得平行四边形。
推论1:顺次连结对角线相等的四边形各边中点得菱形。
推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。⑶外角和:360°2.特殊四边形
⑴研究它们的一般方法:
⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定⑶判定步骤:四边形→平行四边形→矩形→正方形┗→菱形↑
⑷对角线的纽带作用:3.对称图形
⑴轴对称(定义及性质);⑵中心对称(定义及性质)4.有关定理:①平行线等分线段定理及其推论1、2②三角形、梯形的中位线定理
③平行线间的距离处处相等。(如,找下图中面积相等的三角形)
5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。6.作图:任意等分线段。
第十章圆
★重难点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。一、圆的基本性质1.圆的定义
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。3.“三点定圆”定理4.垂径定理及其推论
5.“等对等”定理及其推论
5.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系
1.三种位置及判定与性质:相离、相切、相交2.切线的性质(重点)
3.切线的判定定理(重点)。圆的切线的判定有⑴⑵
4.切线长定理
三、圆换圆的位置关系
1.五种位置关系及判定与性质:(重点:相切)外离、外切、相交、内切、内含
2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理
五、与和正多边形
1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:
内角的一半:(解Rt△OAM可求出相关元素等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式
5.弓形面积的计算方法
6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图
1.作三角形的外接圆、内切圆2.平分已知弧
3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线1.作半径
2.见弦往往作弦心距
3.见直径往往作直径上的圆周角4.切点圆心莫忘连
5.两圆相切公切线(连心线)6.两圆相交公共弦
初三数学知识点总结 第12篇
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k [抛物线的.顶点P(h,k)]
交点式:y=a(x-x)(x-x ) [仅限于与x轴有交点A(x ,0)和 B(x,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
初三数学知识点总结 第13篇
经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
垂直平分线的性质
1.垂直平分线垂直且平分其所在线段。
2.垂直平分线上任意一点,到线段两端点的距离相等。
3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
4.线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5.三角形三条边的垂直平分线相交于一点,该点叫外心circumcenter,并且这一点到三个顶点的距离相等。此时以外心为圆心,外心到顶点的长度为半径,所作的圆为此三角形的外接圆。
垂直平分线的逆定理
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:要证明一条线为一个线段的'垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明
通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法
方法之一:用圆规作图
1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。得到两个交点两交点交与线段的同侧。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
方法之二:
1、连接这两个交点。原理:两点成一线。
等腰三角形的性质:
1、三线合一等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。
2、等角对等边如果一个三角形,有两个内角相等,那么它一定有两条边相等。
3、等边对等角在同一三角形中,如果两个角相等,即对应的边也相等。
垂直平分线的判定
①利用定义。
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.即线段垂直平分线可以看成到线段两端点距离相等的点的集合。
初三数学知识点总结 第14篇
1、图形的相似
相似多边形的对应边的比值相等,对应角相等;
两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;
相似比:相似多边形对应边的比值。
2、相似三角形
判定:
平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;
如果两个三角形的三组对应边的比相等,那么这两个三角形相似;
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;
如果一个三角形的两个角与另一个三角形的'两个角对应相等,那么两个三角形相似。
3相似三角形的周长和面积
相似三角形(多边形)的周长的比等于相似比;
相似三角形(多边形)的面积的比等于相似比的平方。
4位似
位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。
初三数学知识点总结 第15篇
1.不在同一直线上的三点确定一个圆。
2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12.①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理圆的切线垂直于经过切点的半径
15.推论1经过圆心且垂直于切线的直线必经过切点
16.推论2经过切点且垂直于切线的直线必经过圆心
17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离d>R+r ②两圆外切d=R+r
③.两圆相交R-rr
④.两圆内切d=R-rR>r ⑤两圆内含dr
21.定理相交两圆的连心线垂直平分两圆的公共弦
22.定理把圆分成nn≥3:
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于n-2×180°/n
25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4
29.弧长计算公式:L=n兀R/180
30.扇形面积公式:S扇形=n兀R^2/360=LR/2
31.内公切线长= d-R-r外公切线长= d-R+r
32.定理一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径
35.弧长公式l=ar a是圆心角的弧度数r >0扇形面积公式s=1/2lr
初三数学复习方法
一、回归课本,夯实基础,做好预习。
数学的基本概念、定义、公式,数学知识点之间的内在联系,基本的数学解题思路与方法,是复习的重中之重。回归课本,要先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要稳扎稳打,不要盲目攀高,欲速则不达。复习课的内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,提高学习效率。
二、提高课堂听课效率,多动脑,勤动手
初三的课只有两种形式:复习课和评讲课,到初三所有课都进入复习阶段,通过复习,学生要知道自己哪些知识点掌握的比较好,哪些知识点有待提高,因此在复习课之前一定要有自已的思考,这样听课的目的就明确了。现在学生手中都会有一些复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的.没有掌握好的旧知识,可进行查漏补缺,以减少听课过程中的困难,自己理解了的东西与老师的讲解进行比较、分析即可提高自己的数学思维;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,事半功倍。此外对于老师讲课中的难点,重点要作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。
三、建立错题本,查漏补缺
初三复习,各类试题要做几十套,甚至上百套。特级教师提醒学生可以建立一个错题本,把平时做错的题系统的整理好,在上面写上评析和做错的原因,每过一段时间,就把“错题笔记”拿出来看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三,融会贯通”,及时归纳总结。每次订正试卷或作业时,在错题旁边要写明做错的原因。
初三数学学习建议
培养良好的学习习惯
1制定计划。从而使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。
2课前自学。这是上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
3专心上课。“学然后知不足”,这是理解和掌握基本知识、基本技能和基本方法的关键环节。课前自学过的学生上课更能专心听课,他们知道什么地方该详细听,什么地方可以一带而过,该记的地方才记下来,而不是全盘抄录,顾此失彼。
4及时复习。这是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。
5独立作业。这是掌握独立思考,分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的必要过程。这一过程也是对学生意志毅力的考验,通过作业练习使学生对所学知识由“会”到“熟”。
6解决疑难。这是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并经常把容易错的地方拿来复习强化,作适当的重复性练习,把从老师、同学处获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
7系统小结。这是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
8课外学习。课外学习是课内学习的补充和继续,包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展学生的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。
初三数学知识点总结 第16篇
三角形的外心定义:
外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
三角形的外心的性质:
1、三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的'圆心;
2、三角形的外接圆有且只有一个,即对于给定的三角形,其外心是的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;
3、锐角三角形的外心在三角形内;
钝角三角形的外心在三角形外;
直角三角形的外心与斜边的中点重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R
初三数学知识点总结 第17篇
(三角形中位线的定理)
三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
(平行四边形的性质)
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分。
(矩形的性质)
①矩形具有平行四边形的一切性质;
②矩形的四个角都是直角;
③矩形的对角线相等。
正方形的判定与性质
1、判定方法:
1邻边相等的矩形;
2邻边垂直的菱形;
3对角线垂直的矩形;
4对角线相等的菱形;
2、性质:
1边:四边相等,对边平行;
2角:四个角都相等都是直角,邻角互补;
3对角线互相平分、垂直、相等,且每长对角线平分一组内角。
等腰三角形的判定定理
(等腰三角形的判定方法)
1、有两条边相等的三角形是等腰三角形。
2、判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形简称:等角对等边。
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,学习方法,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的.点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
标准差与方差
极差是什么:一组数据中数据与最小数据的差叫做极差,即极差=值—最小值。
计算器——求标准差与方差的一般步骤:
1、打开计算器,按“ON”键,按“MODE”“2”进入统计SD状态。
2、在开始数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键清除统计存储器。
3、输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。如果想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据出现的频数,再按“M+”键。
4、当所有的数据全部输入结束后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差;
5、标准差的平方就是方差。
初三数学知识点总结 第18篇
全套教科书包含了课程标准(实验稿)规定的“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体。
九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。本册书内容分析如下:
第21章二次根式
学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。“二次根式”一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:
注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。“二次根式的乘除”一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到
并运用它们进行二次根式的化简。
“二次根式的加减”一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。
第22章一元二次方程
学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程——一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的`解法,并运用这种方程解决一些实际问题。
本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,
“降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
“实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
第23章旋转
学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。“旋转”一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。
“旋转”一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。
“中心对称”一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。
“课题学习图案设计”一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。
第24章圆
圆是一种常见的图形。在“圆”这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。
“圆”一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。
“与圆有关的位置关系”一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明“在同一直线上的三点不能作圆”引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。
“正多边形和圆”一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。
“弧长和扇形面积”一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。
第25章概率初步
将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了“概率”一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。
“概率”一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。
“用列举法求概率”一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。
“利用频率估计概率”一节通过幼树成活率和柑橘损坏率等问题介绍了用频率估计概率的方法。
“课题学习键盘上字母的排列规律”一节让学生通过这一课题的研究体会概率的广泛应用。
初三数学知识点总结 第19篇
直线、相交线、平行线
1、线段、射线、直线三者的区别与联系
从图形、表示法、界限、端点个数、基本性质等方面加以分析。
2、线段的中点及表示
3、直线、线段的.基本性质(用线段的基本性质论证三角形两边之和大于第三边)
4、两点间的距离(三个距离:点—点;点—线;线—线)
5、角(平角、周角、直角、锐角、钝角)
6、互为余角、互为补角及表示方法
7、角的平分线及其表示
8、垂线及基本性质(利用它证明直角三角形中斜边大于直角边)
9、对顶角及性质
10、平行线及判定与性质(互逆)(二者的区别与联系)
11、常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。